

The Prosim Universal Joint
Simulator pushes the mechanical
envelope of adverse wear testing
of biomechanical implants much
further than it had gone before.

The Six Axis Universal Joint Simulator meets the following apparatus requirements:

- ISO 14242-1 Implants for surgery wear of total hip-joint prostheses – Part 1: loading and displacement parameters for wear-testing machines with load control and corresponding environmental conditions for test
- ISO 14243-1 Implants for surgery wear of total knee-joint prostheses – Part 1: loading and displacement parameters for wear-testing machines with load control and corresponding environmental conditions for test
- ISO 14243-3 Implants for surgery wear of total knee-joint prostheses – Part 3: loading and displacement parameters for wear-testing machines with displacement control and corresponding environmental conditions for test
- ISO 14242-4 Implants for surgery wear of total hip-joint prostheses – Part 4: testing hip prostheses under variations in component positioning that results in direct edge loading
- ISO 18192-1 Implants for surgery wear of total intervertebral spinal disc prostheses ('TDR' hereafter) – Part 1: loading and displacement parameters for wear-testing machines and corresponding environmental conditions for test (Lumbar Spine)
- ISO 22622 Implants Wear of total ankle-joint prostheses – Loading and displacement parameters for wear-testing machines with load or displacement control and corresponding environmental conditions for test

- ISO 16436-1 Implants for surgery Wear of total shoulder-joint prostheses – Loading and displacement parameters for wear-testing machines and corresponding environmental conditions for test – Part 1: Anatomic total shoulder-joint prostheses
- ISO 16436-2 Implants for surgery Wear of total shoulder-joint prostheses – Loading and displacement parameters for wear-testing machines and corresponding environmental conditions for test – Part 2: Reverse total shoulder-joint prostheses
- ISO 7206-6 Endurance properties of stemmed femoral components
- ISO 14879-1 Endurance of tibial trays
- ISO 16402 Flexural fatigue testing of acrylic resin cement
- ASTM F2790 Characterisation of motion preserving lumbar total facet prostheses
- ASTM F2777-10 Tibial insert endurance and deformation under high flexion
- ASTM F2028 Dynamic evaluation of glenoid loosening

The Prosim Universal Joint Simulator includes numerous features and benefits:

- Can be used for the study of both cadaveric and non-cadaveric samples
- Six independent axes of articulation
- Equipped with a novel six-axis loadcell rated to 12kN that allows the mounting of a complete femoral stem
- Simple user programmability of any articulation/load cycle
- Operating frequency of motions programmable up to 0.01 Hz to 2.5 Hz
- Capable of running programmed sequences of walking, jogging, running and periods of rest
- Peak axial loading of up to 11kN
- Up to +40°/-120° of programmable motion on the flexion-extension axis
- Up to +/-25mm of programmable medial-lateral translation applying up to 1.5kN force
- Up to +/-25mm of programmable anterior-posterior translation applying up to 1.5kN force

- Up to +/- 40° of programmable motion on the axial rotation axis
- Up to +/-40° of programmable motion on the adduction/abduction axis
- Able to adjust acetabular cup angulation from +30° to +65° in situ
- Able to adjust retroversion-anteversion angulation from +/- 35° in situ
- Able to adjust tibial tray declination from 0° to -15° in situ
- Able to run both force and displacement control of all axes
- Test fluid temperature is maintained at 37°C ±2°C
- Clinically and physiologically representative testing